已知黄金矩形的长为a.则他的面积为 , 查看更多

 

题目列表(包括答案和解析)

精英家教网我们已经知道,如果线段MN被点P分成线段MP和PN,且
MP
MN
=
PN
MP
,那么称线段MN被点P黄金分割,点P叫做线段MN的黄金分割点,MP与MN的比叫做黄金比.通过计算可知黄金比为
5
-1
2
.若一个矩形的短边与长边之比等于黄金比,则称这个矩形为黄金矩形.已知图中正方形ABCD的边长为1,请你以AD为短边,用尺规作一个黄金矩形,要求保留作图痕迹并简要写出作法,不要求证明.

查看答案和解析>>

(2013•佛山)我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.
(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
分割图形       分割或图形说明
示例:
示例:
①分割成两个菱形.
②两个菱形的边长都为a,锐角都为60°.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

查看答案和解析>>

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.

已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);

要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.

(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.

要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

解:在表格中作答

分割图形

      分割或图形说明

示例

示例①分割成两个菱形。

②两个菱形的边长都为a,锐角都为60°。

 

 

 

查看答案和解析>>

(2004•临沂)我们已经知道,如果线段MN被点P分成线段MP和PN,且,那么称线段MN被点P黄金分割,点P叫做线段MN的黄金分割点,MP与MN的比叫做黄金比.通过计算可知黄金比为.若一个矩形的短边与长边之比等于黄金比,则称这个矩形为黄金矩形.已知图中正方形ABCD的边长为1,请你以AD为短边,用尺规作一个黄金矩形,要求保留作图痕迹并简要写出作法,不要求证明.

查看答案和解析>>

我们已经知道,如果线段MN被点P分成线段MP和PN,且数学公式,那么称线段MN被点P黄金分割,点P叫做线段MN的黄金分割点,MP与MN的比叫做黄金比.通过计算可知黄金比为数学公式.若一个矩形的短边与长边之比等于黄金比,则称这个矩形为黄金矩形.已知图中正方形ABCD的边长为1,请你以AD为短边,用尺规作一个黄金矩形,要求保留作图痕迹并简要写出作法,不要求证明.

查看答案和解析>>


同步练习册答案