判断正误: 计算: ( ) 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=
m
2
BC,CE=
n
2
AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.

查看答案和解析>>

如图1,正△ABC和正△FDE,F与B重合,AB与FD在一条直线上.
(1)若将△FDE绕点B旋转一定角度(如图2),试说明CD=AE;
(2)已知AB=6,DE=2
3
,把图1中的△FDE绕点B逆时针方向旋转90°(如图3),试判断四边形EBDC的形状,并说明你的理由;
(3)若把图1中的正△FDE沿BA方向平移(如图4),连接AE、BE,已知正△ABC和正△FDE的边长分别是5cm和2
3
cm,问在平移过程中,△ABE是否会成为等腰三角形?若能,直接写出FB的值;若不能,说明理由.       精英家教网

查看答案和解析>>

精英家教网某特种侦察小队在一次作战行动中发现一个空中固定目标点C,并以O、A为两观察点,分别测得目标C的仰角分别是α和β,且tanα=
9
28
,tanβ=
3
8
,又OA=1千米.
(1)建立如图所示的平面直角坐标系,根据题中提供的数据,求出目标点C的坐标;
(2)该侦察小队及时引导武装直升机在O点正上方
5
3
千米的D处向目标C发射了防空导弹,经测算,该导弹在离开D点的水平距离为4千米时,达到了最大的离地飞行高度3千米.若导弹飞行轨迹为抛物线,求其解析式;精英家教网
(3)试判断按(2)中轨迹飞行的导弹是否能击中目标C,并说明理由.

查看答案和解析>>

在△ABC中,∠C=90°,AC,BC的长分别是b,a,且cotB=AB•cosA.
(1)求证:b2=a;
(2)若b=2,抛物线y=m(x-b)2+a与直线y=x+4交于点M(x1,y1)和点N(x2,y2),且△MON的面积为6(O是坐标原点).求m的值;
(3)若n2=
4ab2
,p-q-3=0
,抛物线y=n(x2+px+3q)与x轴的两个交点中,一个交点在原点的右侧,试判断抛物线与y轴的交点是在y轴的正半轴还是负半轴,说明理由.

查看答案和解析>>

18、如图1,把边长为4的正三角形各边四等分,连接各分点得到16个小正三角形.
(1)如图2,连接小正三角形的顶点得到的正六边形ABCDEF的周长=
6

(2)请你判断:命题“六个内角相等的六边形是正六边形”是真命题还是假命题如果是真命题,请你把它改写成“如果…,那么…”的形式;如果是假命题,请在图1中画图说明.

查看答案和解析>>


同步练习册答案