题目列表(包括答案和解析)
已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E ,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
⑴求BC、AP1的长;
⑵设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
⑶以点E为圆心作⊙E与x轴相切
①探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围;
②当直线L把矩形ABCD分成两部分的面积之比值为3∶5时,则⊙P和⊙E的位置关系如何?并说明理由。
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为表示在数轴上,对应点之间的距离;
例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3
例3:解方程。由绝对值的几何意义知,该方程表示求在数轴上与1
和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题:
(1)方程的解为
(2)解不等式≥9;
(3)若≤a对任意的x都成立,求a的取值范围.
阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为表示在数轴上,对应点之间的距离;
例1 解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2 解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3
例3 解方程。由绝对值的几何意义知,该方程表示求在数轴上与1
和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题:
(1)方程的解为
(2)解不等式≥9;
(3)若≤a对任意的x都成立,求a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com