如图△ABC.AB=AC,CD,BE分别 O 是的角平分线.交点 为O.则三角形全等的个数有 对. 查看更多

 

题目列表(包括答案和解析)

如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O.BE=CD
(1)问△ABC为等腰三角形吗?为什么?
(2)问点O在∠A的平分线上吗?为什么?

查看答案和解析>>

如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:
①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.
(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;
(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=数学公式CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O.BE=CD
(1)问△ABC为等腰三角形吗?为什么?
(2)问点O在∠A的平分线上吗?为什么?

查看答案和解析>>


同步练习册答案