17.计算得( ) A.2n B.-2n C.2 D.-2 查看更多

 

题目列表(包括答案和解析)

10、计算2n-2n+1得(  )

查看答案和解析>>

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法求图2中阴影部分的面积.
(m-n)2
(m-n)2

(m+n)2-4mn
(m+n)2-4mn

(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于______?
(2)请用两种不同的方法求图2中阴影部分的面积.
①______;
②______.
(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn______.
(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

数学家高斯在读小学二年级时老师出了这样一道计算题:

1+2+3+4+…+100=?

高斯很快得出了答案,他的计算方法是:

1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=50×(1+100)=5050.

(1)请你应用上述方法求S=1+3+5+…+(2n-1)的计算公式;

(2)如图,第二个图形是由第一个图形中的三角形连接三边中点而得到的,第三个图形是第二个图形中间一个三角形连结三边中点而得到的,依此类推……

分别写出第二个图形、第三个图形和第四个图形的三角形的个数,由此推测出第n个图形中三角形的个数,并求出第一个图形到第n个图形的三角形个数之和S

查看答案和解析>>

26、数学家高斯在读小学二年级时,老师出了这样一道计算题.
1+2+3+4+…+100=高斯很快得出了答案,他的计算方法是
1+2+3+4+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)
=50(1+100)=5050.
(1)请你应用上述方法,求S=1+3+5+…+(2n-1)的计算公式.
(2)如图

第二个图是由第一个图形中的三角形连接三边中点而得到的,第三个图是由第二个图中间一个三角形连接三边中点得到的,依次类推,分别写出第二个图形、第三个图形和第四个图形的三角形的个数,由此推测第n个图形三角形的个数,并求出第一个图形到第n个图形的三角形的个数之和.

查看答案和解析>>


同步练习册答案