27.解:(1)如果①②③.那么④⑤ 证明:如图.延长AE交BC的延长线于F ∵AD∥BC ∴∠1=∠F 又∵∠AED=∠CEF.DE=EC∴△ADE≌△FCE ∴AD=CF.AE=EF ∵∠l=∠F.∠1=∠2.∠2=∠F ∴AB=BF∴∠3=∠4 ∴AD+BC=CF+BC=BF=AB (说明:其它真命题的证明可参照上述过程相应给分) (2)如果①②④.那么③⑤ 如果①③④.那么②⑤ 如果①③⑤.那么②④ 中四个命题含假命题(“如果②③④.那么①⑤’’).则不加分,若(3)中含假命题.也不加分. 21-如图.下面四个条件中.请你以其中两个为已知条件.第三个为结论.推出一个正确的命题. 查看更多

 

题目列表(包括答案和解析)

阅读与证明:在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等.如图①,在△ABC中,如果∠B=∠C,那么AB=AC,这一结论可以说明如下:
解:过点A作AD⊥BC于D,则∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
请你仿照上述方法在图②中再选一种方法说明以上结论.
操作:如图③,点O为线段MN的中点,直线PQ与MN相交于点O,过点M、N作一组平行线分别与PQ交于点M′、N′,则线段MM′一定等腰NN′.想一想,为什么?
根据上述阅读与证明的结论以及操作得到的经验完成下列探究活动.探究:如图④,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并说明你的结论.

查看答案和解析>>

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两 腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在   三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于        
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

查看答案和解析>>

阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两  腰的距离分别为,腰上的高为h,连结AP,则,即: ,(1)理解与应用

如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理

边长为2的正方形内任意一点到各边的距离的和等于        

(3)拓展与延伸

若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

              

 

查看答案和解析>>

阅读材料:如图,△ABC中,AB=ACP为底边BC上任意一点,点P到两腰的距离分别为,腰上的高为h,连结AP,则即:

(1)理解与应用    如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为,试证明:.

(2)类比与推理         边长为2的正方形内任意一点到各边的距离的和等于        

(3)拓展与延伸      若边长为2的正n边形A1A2An内部任意一点P到各边的距离为,请问是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值。

             

查看答案和解析>>

23、(1)如图1,在△ABC中,绕点C旋转180°后,得到△CA′B′请先画出变换后的图形,写出下列结论正确的序号是
①②③④

①△ABC≌△A′B′C;
②线段AB绕C点旋转180°后,得到线段A′B′;
③A′B′∥AB;
④C是线段BB′的中点.
在(1)的启发下解答下面问题:
(2)如图2,在△ABC中,∠BAC=120°,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不证明)
(3)如图3,在△ABC中,如果∠BAC≠120°,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)并加以证明.

查看答案和解析>>


同步练习册答案