若点A在轴上.则的值是( ) A.0 B.-3 C.1 D.以上都不对 查看更多

 

题目列表(包括答案和解析)

如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长.

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

查看答案和解析>>

一次函数图象与y轴的交点在x轴上方.函数y=(m-2)x-m-3,且随x的增大而减小,则m的取值范围是________;若此函数图象经过一、三、四象限,则m的取值范围是________,若此函数图象与x轴交于点(-1,0),则m=________.

查看答案和解析>>

已知点A、B在数轴上分别表示有理数ab,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|ab|,当A、B两点都不在原点时

 

① 如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=ba=|ab|;

② 如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=ab=|ab|;

③ 如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=ab=|ab|;

综上,数轴上A、B两点之间的距离|AB|=|ab|

利用上述结论,请结合数轴解答下列问题:

(1) 数轴上表示2和-5的两点之间的距离是_________,数轴上表示-1和-3的两点之间的距离是________

(2) 若数轴上有理数x满足|x-1|+|x+2|=5,则有理数x为___________

(2) 数轴上表示a和-1的点的距离可表示为|a+1|,表示a和3的点距离表示为|a-3|,当|a+1|+|a-3|取最小值时,有理数a的范围是______________,最小值是___________

查看答案和解析>>

已知点A、B在数轴上分别表示有理数ab,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|ab|,当A、B两点都不在原点时

 

① 如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=ba=|ab|;

② 如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=ab=|ab|;

③ 如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=ab=|ab|;

综上,数轴上A、B两点之间的距离|AB|=|ab|

利用上述结论,请结合数轴解答下列问题:

(1) 数轴上表示2和-5的两点之间的距离是_________,数轴上表示-1和-3的两点之间的距离是________

(2) 若数轴上有理数x满足|x-1|+|x+2|=5,则有理数x为___________

(2) 数轴上表示a和-1的点的距离可表示为|a+1|,表示a和3的点距离表示为|a-3|,当|a+1|+|a-3|取最小值时,有理数a的范围是______________,最小值是___________

查看答案和解析>>

如图,在平面直角坐标系中,已知点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(点P与F、G不重合),作PQ∥y轴与抛物线交于点Q.
(1)若经过B、E、C三点的抛物线的解析式为y=-x2+(2b-1)x+c-5,则b=         ,c=         (直接填空)
(2)①以P、D、E为顶点的三角形是直角三角形,则点P的坐标为         (直接填空)
②若抛物线顶点为N,又PE+PN的值最小时,求相应点P的坐标.
(3)连结QN,探究四边形PMNQ的形状:
①能否成为平行四边形
②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>


同步练习册答案