了解勾股定理的面积证法及其数形结合思想, 查看更多

 

题目列表(包括答案和解析)

(2012•浙江一模)在研究勾股定理时,同学们都见到过图1,∠CBA=90°,四边形ACKH、BCED、ABFG都是正方形.
(1)连接BK、AE得到图2,则△CBK≌△CEA,此时两个三角形全等的判定依据是
SAS
SAS
;过B作BM⊥KH于M,交AC于N,则S矩形KMNC=2S△CKB;同理S正方形BCED=2S△CEA,得S正方形BCED=S矩形KMNC,然后可证得勾股定理.
(2)在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△BCD、△ABG、△ACK的面积关系是
S△BCD+S△ABG=S△ACK
S△BCD+S△ABG=S△ACK

(3)为了研究问题的需要,将图1中的Rt△ABC也进行“退化”为锐角△ABC,并擦去正方形ACKH得图4,由AB、BC两边向三角形外作正△BCD、正△ABG,△BCD的外接圆与AD交于点P,此时C、P、G共线,从△ABC内一点到A、B、C三个顶点的距离之和最小的点恰为点P(已经被他人证明).设BC=3,CA=4,∠BCA=60°.求PA+PB+PC的值.
 

查看答案和解析>>

勾股定理的证明多达200多种,有一位总统利用两个全等的Rt△纸片,给出如下的一种摆法(C,E,D在同一直线上),再添上一条线,便可利用面积法证得a2+b2=c2.请你试着添一条线,并给出证明.
精英家教网

查看答案和解析>>

(14分)在研究勾股定理时,同学们都见到过图1,∠,四边形都是正方形.
⑴连结得到图2,则△≌△,此时两个三角形全等的判定依据是
  ;过,交,则;同理,得,然后可证得勾股定理.
⑵在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△、△、△的面积关系是        .
⑶为了研究问题的需要,将图1中的也进行“退化”为锐角△,并擦去正方形得图4,由两边向三角形外作正△、正△,△的外接圆与交于点,此时共线,从△内一点到三个顶点的距离之和最小的点恰为点(已经被他人证明).设=3,=4,.求的值.

查看答案和解析>>

(14分)在研究勾股定理时,同学们都见到过图1,∠,四边形都是正方形.
⑴连结得到图2,则△≌△,此时两个三角形全等的判定依据是
  ;过,交,则;同理,得,然后可证得勾股定理.
⑵在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△、△、△的面积关系是        .
⑶为了研究问题的需要,将图1中的也进行“退化”为锐角△,并擦去正方形得图4,由两边向三角形外作正△、正△,△的外接圆与交于点,此时共线,从△内一点到三个顶点的距离之和最小的点恰为点(已经被他人证明).设=3,=4,.求的值.

查看答案和解析>>

(14分)在研究勾股定理时,同学们都见到过图1,∠,四边形都是正方形.

⑴连结得到图2,则△≌△,此时两个三角形全等的判定依据是

   ;过,交,则;同理,得,然后可证得勾股定理.

⑵在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△、△、△的面积关系是          .

⑶为了研究问题的需要,将图1中的也进行“退化”为锐角△,并擦去正方形得图4,由两边向三角形外作正△、正△,△的外接圆与交于点,此时共线,从△内一点到三个顶点的距离之和最小的点恰为点(已经被他人证明).设=3,=4,.求的值.

 

查看答案和解析>>


同步练习册答案