13.(1)等腰三角形 . . 互相重合. (2)△ABC中.∠A=∠B=2∠C.那么∠C= . (3)在等腰三角形中.设底角为x°.顶角为y°.则用含x的代数式表示y.得y= ,用含y的代数式表示x.得x= . 查看更多

 

题目列表(包括答案和解析)

(1)等腰三角形
 
 
 
互相重合.
(2)△ABC中,∠A=∠B=2∠C,那么∠C=
 

(3)在等腰三角形中,设底角为x°,顶角为y°,则用含x的代数式表示y,得y=
 
;用含y的代数式表示x,得x=
 

查看答案和解析>>

精英家教网“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:
 

求证:
 

证明:
 

查看答案和解析>>

“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:________;
求证:________;
证明:________.

查看答案和解析>>

“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:______;
求证:______;
证明:______.
精英家教网

查看答案和解析>>

小明在证明“等腰三角形底边上的高线、底边上的中线和顶角的平分线互相重合”这一命题时,画出图形,写出“已知”、“求证”(如图).
(1)请你帮助小明完成证明过程.
(2)请你作出判断:小明写出的“已知”、“求证”是否完整?在横线上填“是”或“否”.

(3)做完(1)后,小明模仿老师上课时的方法,又提出了如下几个问题:
如:①若将题中“AD⊥BC”与“AD平分∠ABC”的位置交换,得到的是否仍是真命题?
②若将题中“AD⊥BC”与“BD=CD”的位置交换,得到的是否仍是真命题?请你作出判断,在下列横线上填写“是”或“否”:①
 ②
 并对②的判断作出证明.(若是则写出证明过程;若不是则举出一个反例)

查看答案和解析>>


同步练习册答案