请分别写出满足下列的条件的函数关系式 (1) 自变量x的取值范围为全体实数 (2) 自变量t的取值范围为t≤2 (3) 自变量x的取值范围为 x≠-3 (4) 当x=-2时.y=7 (5) 举出一个实际问题背景下的函数例子.列出其函数关系式.并指出自变量的取值范围 [C组] 9:x取什么值时.下列函数的函数值为0. (1) y = 3x-5 (3) y = 10:一个小球由静止开始在一个斜坡上向下滚动.其速度每秒钟增加2米.到达坡底时.小球速度达到40米/秒.求:(1)小球速度v与时间t之间的函数关系式.(2)3.5秒时小球的速度.(3)几秒时小球的速度达到16米/秒? 11:某风景区集体门票的收费标准是20人以内每人25元.超过20人的部分.每人10元. (1) 试写出门票费用y(元)和人数x之间的关系式. (2) 如果某班共有51人到此风景区春游.问门票费用共多少元? 查看更多

 

题目列表(包括答案和解析)

(2013•湖州)一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

小明在课外阅读中对有关“自定义型题”有了一定的了解,他也尝试着自定义了“颠倒数”的概念:从左到右写下一个自然数,再把它按从右到左的顺序写一遍,如果两数位数相同,这样就得到了这个数的“颠倒数”,如348的颠倒数是843.
请你探究,解决下列问题:
(1)请直接写出2012的“颠倒数”为
2102
2102

(2)若数a存在“颠倒数”,则它满足的条件是:
数a的末位数字不等于零
数a的末位数字不等于零

(3)能否找到一个数字填入空格,使下列由“颠倒数”构成的等式成立?12×23□=□32×21.请你用下列步骤探究:
设这个数字为x,将“23□”和“□32”转化为用含x的代数式表示分别为
230+x
230+x
100x+32
100x+32

列出满足条件的关于x的方程:
12(230+x)=21(100x+32)
12(230+x)=21(100x+32)

解这个方程的:x=
1
1

经检验,所求的x值符合题意吗?
符合
符合
(填“符合”或“不符合”).

查看答案和解析>>

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
 

又AG=AE,AF=AF
∴△GAF≌
 

 
=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
1
2
∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
精英家教网

查看答案和解析>>

阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为
10
10

(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:
11,60,61
11,60,61

(3)如图,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的长度.

(4)如图,点A在数轴上表示的数是
-
5
-
5
,请用类似的方法在下图数轴上画出表示数
3
的B点(保留作图痕迹).

查看答案和解析>>

一节数学课后,老师布置了一道课后练习题:

如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.

(2)特殊位置,证明结论

若PB平分∠ABO,其余条件不变.求证:AP=CD.

(3)知识迁移,探索新知

若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

 

查看答案和解析>>


同步练习册答案