若<2.化简= , 查看更多

 

题目列表(包括答案和解析)

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?

建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:

在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?

为了找到解决问题的办法,我们可把上述问题简单化:

(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?

假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);

(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?

我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)

(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?

我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):

……

(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?

我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是________

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是________

(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是________

模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是________

(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是________

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;

(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.

查看答案和解析>>

若方程=-1的解是正数,求a的取值范围.

关于这道题,有位同学作出如下解答:

解:去分母,得2x+a=-x+2,

化简,得3x=2-a.

故x=

欲使方程的根为正数,必须>0,得a<2.

所以,当a<2时,方程=-1的解是正数.

上述解法是否有误?若有错误请说明错的原因,并写出正确解答;若没有错误,请说出每一步解法的依据.

查看答案和解析>>

已知一次函数y=+m(0<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线,△ABC三个顶点的坐标分别为A(-,-1)、B(,-1)、C(0,2).

(1)直线AC的解析式为________,直线的解析式为________(可以含m);

(2)如图,l分别与△ABC的两边交于E、F、G、H,当m在其范围内变化时,判断四边形EFGH中有哪些量不随m的变化而变化?并简要说明理由;

(3)将(2)中四边形EFGH的面积记为S,试求m与S的关系式,并求S的变化范围;

(4)若m=1,当△ABC分别沿直线y=x与y=x平移时,判断△ABC介于直线l之间部分的面积是否改变?若不变请指出来.若改变请写出面积变化的范围.(不必说明理由)

查看答案和解析>>


同步练习册答案