如图.函数y=k(x+1)与(k<0)在同一坐标系中.图象只能是下图中的( ) 查看更多

 

题目列表(包括答案和解析)

如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(-1,0).

(1)求二次函数的关系式;

(2)在抛物线上有一点A,其横坐标为-2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足-2<xB,当△AOB的面积最大时,求出此时直线l的关系式;

(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等.若存在,求出点C的横坐标;若不存在说明理由.

查看答案和解析>>

如图,平面直角坐标系xOy中,A(2,2),B(4,0).将△OAB绕点O顺时针旋转a 角(0°<a <90°)得到△OCD(OAB的对应点分别为OCD),将△OAB沿x轴负方向平移m个单位得到△EFG(m>0,OAB的对应点分别为EFG),a ,m的值恰使点CDF落在同一反比例函数y=(k≠0)的图象上.

(1)∠AOB=________°,a ________°;

(2)求经过点ABF的抛物线的解析式;

(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以PMFA为顶点的四边形的面积与四边形MFAH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF上方的点P的坐标.

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为     x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2 平方厘米.

⑴求y1与x的函数关系,并在图2中画出y1的图象;

⑵如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;

⑶在图2中,点G是x轴正半轴上一点(0<OG<6=,过G作EF垂直于x轴,分别交y1、y2于点E、F.

①说出线段EF的长在图1中所表示的实际意义;

②当0<x<6时,求线段EF长的最大值.

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.

(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.

(1)求y1与x的函数关系,并在图2中画出y1的图象;

(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;

(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1、y2于点E、F.

①说出线段EF的长在图1中所表示的实际意义;

②当0<x<6时,求线段EF长的最大值.

 

查看答案和解析>>


同步练习册答案