题目列表(包括答案和解析)
如图所示,已知:四边形ABCD中,AB=DC、AC=BD、AD≠BC,求证:四边形ABCD是等腰梯形。
证明:过点D作DE∥AB,交BC于E,则∠ABE=∠1。 ①
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB. ②
∴∠ABC=∠DCB. ③
∴∠1=∠DCB. ④
∴AB=DC=DE。 ⑤
∴四边形ABED是平行四边形。 ⑥
∴AD∥BC, ⑦
BE=AD. ⑧
又∵AD≠BC,∴BE≠BC.
∴点E、C是不同的点,DC不平行AB. ⑨
又∵AB=CD,∴四边形ABCD是等腰梯形。 ⑩
读后完成下列各小题。
(1)证明过程是否有错误?如有错在第几步上。答:______________。
(2)作DE∥AB的目的是________________________。
(3)有人认为第9步是多余的,你的看法是______________。
(4)判断四边形ABED为平行四边形的依据是______________。
(5)判断四边形ABCD是等腰梯形的依据是______________。
(6)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?你的意见是______________。
已知△ABC是等边三角形,点P是AC上一点,PE⊥BC于点E,交AB于点F,在CB的延长线上截取BD=PA,PD交AB于点I,.
;
(1)如图1,若,则= ,=
(2)如图2,若∠EPD=60º,试求和的值;
(3)如图3,若点P在AC边的延长线上,且,其他条件不变,则= .(只写答案不写过程)
已知点C为线段AB上一点, 分别以AC、BC为边在线段AB同侧作△ACD
和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直线AE与BD交于点F.
图1 图2 图3
(1)如图1,求证:△ACE≌△DCB。
(2)如图1, 若∠ACD=60°, 则∠AFB= ;
如图2, 若∠ACD=90°, 则∠AFB= ;
(3)如图3, 若∠ACD=β, 则∠AFB= (用含β的式子表示)
并说明理由。
已知半径为R的⊙经过半径为r的⊙O的圆心,⊙O与⊙交于E、F两点.
(1)如图(1),连结00'交⊙O于点C,并延长交⊙于点D,过点C作⊙O的切线交⊙于A、B两点,求OA·OB的值;
(2)若点C为⊙O上一动点,①当点C运动到⊙时,如图(2),过点C作⊙O的切线交⊙,于A、B两点,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.
②当点C运动到⊙外时,过点C作⊙O的切线,若能交⊙于A、B两点,如图(3),则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.
A. cm
B.5 cm
C.10cm
D.5cm
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com