51.清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日.西安发现了他的数学专著.其中有一文.它对“三边长为3.4.5的整数倍的直角三角形.已知面积求边长 这一问题提出了解法:“若所设者为积数.以积率六除之.平方开之得数.再以勾股弦各率乘之.即得勾股弦之数 .用现在的数学语言表述是:“若直角三角形的三边长分别为3.4.5的整数倍.设其面积为S.则第一步:=m,第二步:=k,第三步:分别用3.4.5乘以k.得三边长 . (1)当面积S等于150时.请用康熙的“积求勾股法 求出这个直角三角形的三边长, (2)你能证明“积求勾股法 的正确性吗?请写出证明过程. 查看更多

 

题目列表(包括答案和解析)

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:
S
6
=m;第二步:
m
=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:数学公式=m;第二步:数学公式=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:
S
6
=m;第二步:
m
=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗请写出证明过程.

查看答案和解析>>

清朝康熙皇帝是我国历史上一位对数学很有兴趣的帝王,前不久,在西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题作出解法。“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数。”对这段话用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:;第二步:;第三步:分别用3、4、5乘以k,得三边长。”
(1)当面积S等于150时,请用康熙的“积求勾股法”求出直角三角形的三边长;
(2)你能说明“积求勾股法”的正确性吗?请写出说理过程。

查看答案和解析>>


同步练习册答案