提示:根据分式的概念判断.π是常数而不是字母.代数式.只符合分式的特征不需要化简.所以它是分式, 查看更多

 

题目列表(包括答案和解析)

已知a,b,c,d都不等于0,并且
a
b
=
c
d
,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.
(1)
a
c
b
d
;   (2)
a+b
b
c+d
d
;   (3)
a+b
a-b
c+d
c-d
(a≠b,c≠d).
(提示:可以先用具体数字试验,再对发现的规律进行证明.)

查看答案和解析>>

已知a,b,c,d都不等于0,并且
a
b
=
c
d
,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.
(1)
a
c
b
d
;   (2)
a+b
b
c+d
d
;   (3)
a+b
a-b
c+d
c-d
(a≠b,c≠d).
(提示:可以先用具体数字试验,再对发现的规律进行证明.)

查看答案和解析>>

已知a,b,c,d都不等于0,并且数学公式,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.
(1)数学公式数学公式;  (2)数学公式数学公式;  (3)数学公式数学公式(a≠b,c≠d).
(提示:可以先用具体数字试验,再对发现的规律进行证明.)

查看答案和解析>>

如图①,已知平面内一点P与一直线l,如果过点P作直线l′⊥l,垂足为P′,那么垂足P′叫做点P在直线l上的射影;如果线段PQ的两个端点P和Q在直线l上的射影分别为点P′和Q′,那么线段P′Q′叫做线段PQ在直线l上的射影.
(1)如图②,E、F为线段AD外两点,EB⊥AD,FC⊥AD,垂足分别为B、C.
则E点在AD上的射影是
 
点,A点在AD上的射影是
 
点,
线段EF在AD上的射影是
 
,线段AE在AD上的射影是
 

(2)根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)
精英家教网

查看答案和解析>>

精英家教网如图所示,在边长为2的菱形ABCD中,∠DAB=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为
 
.(提示:根据轴对称的性质)

查看答案和解析>>


同步练习册答案