2.矩形ABCD在坐标系中的位置如图3所示.若矩形的边长AB为1.AD为2.则点A.B.C.D的坐标依次为 ,把矩形向右平移3个单位.得矩形.的坐标为 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)

在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);

第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)

请解答以下问题:

1.(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.

2.(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

 

查看答案和解析>>

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

 

查看答案和解析>>

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案和解析>>

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案和解析>>

(本小题满分10分)

如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.

⑴求证:ME = MF.

⑵如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.

⑶如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.

⑷根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

 

查看答案和解析>>


同步练习册答案