题目列表(包括答案和解析)
如图①所示,将一个正三角形纸片沿着它的一条边上的高剪开,得到如图②所示的两个全等的Rt△ABC、Rt△DEF.
(1)根据正三角形的性质可知:在图②中,∠ABC=∠DEF=30°,AB=DE=2AC=2DF.由此请你归纳一下在含30°角的直角三角形中,30°角所对的直角边与斜边之间的关系:
在含30°角的直角三角形中,30°角所对的直角边________;
(2)将这两个直角三角形纸片按如图③放置,使点B、D重合,点F在BC上.固定纸片DEF,将△ABC绕点F逆时针旋转角α(0°<α<90°),使四边形ACDE为以ED为底的梯形(如图④所示),求此时α的值;
(3)猜想图④中AE与CD之间的大小关系,并说明理由.
在△ABC中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕P点旋转,三角板的两条直角边分别交AC、CB于D、E两点,如图(1)、(2)所示.
(1)问PD与PE有何大小关系?并以图(2)为例加以说明;
(2)在旋转过程中,还会存在与图(1)、(2)不同的情形吗?若存在,请在图(3)中画出,并说明(1)中PD与PE的大小关系在图(3)中是否还成立?
如下图所示,在Rt△ABC中,∠C=90°,两直角边的和为12,tanB=2.求斜边长.
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;
(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.
把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP·CQ=_________.
(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP·CQ的值是否改变?说明你的理由.
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com