5.如图.把绕B点逆时针方向旋转30º后.画出旋转后的三角形. 查看更多

 

题目列表(包括答案和解析)

如图,把O点逆时针旋转120°、240°,试一试画出的图形是怎样的图形.

查看答案和解析>>

把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;
(2)请求出△的内切圆半径;
(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).

查看答案和解析>>

把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;

(2)请求出△的内切圆半径;

(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).

 

查看答案和解析>>

几何变换

  平移、对称与旋转是常见的几何变换,它们都是把一个几何图形F1变换成为一个几何图形F2,而且这种变换仅改变图形的位置,不改变图形的形状和大小.

  例如:把△ABC沿直线BC平行移动,可以变到△ECD的位置(如图1);以BC为轴把△ABC翻折,可以变到△BDC的位置(如图2);绕A点把△ABC逆时针旋转,可以变到△AED的位置(如图3).

  像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.

如图,在正方形ABCD中,E是AD的中点,F是BA的延长线上一点,AF=AB.

(1)你认为可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置,怎样变化?

(2)根据全等变换的意义,你能否知道线段BE与DF之间的关系.

查看答案和解析>>

精英家教网把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的
516
?若存在,求出此时x的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案