将一个多边形放大为原来的3倍.则放大后的图形可作出 个.其原因是 10.正方形网格中有一条简笔画“鱼 .请你以点为位似中心放大.使新图形与原图形的对应线段的比是. 查看更多

 

题目列表(包括答案和解析)

钟面数字问题
如图,钟面上有1,2,3,…,11,12这12个数字.
(1)试在某些数的前面添加负号,使它们的代数和为零
(2)能否改变钟面上的数,比如只剩下6个偶数,仍按第(1)小题的要求来做?
[思路探究]
(1)我们先试着选定任意几个数字,在其前面添加负号,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
这当然不是我们要的答案,但我们可以将其调整,比如改变1前面的符号,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用这种方法当然可以得到许多答案,但我们并不满足.我们希望寻找其中的规律,使我们能找到更多的解答.我们发现:
在调整符号的过程中,若将一个正数变号,12个数的代数和就减少这个正数的两倍;若将一个负数变号,12个数的代数和就增加这个负数的绝对值的两倍.
要使12个数的代数和为零,其中正数的和的绝对值必须与负数的和的绝对值相等,均为12个数之和的-半,即等于39.
由此,我们只要找到几个和为39的数,将这些数添上负号即可.
由于最大3个数之和为33<39,因此必须再添上一个6才有解答,所以添加负号的数至少要有4个.同理可知,添加负号的数最多不超过8个.
根据以上规律,就能在很短的时间内得到许多解答,但是要写出所有解答,还必须把答案作适当的分类.本题共有124个解答,亲爱的读者,你能写出这124个解答来吗?
(2)因为2+4+6+8+10+12-42,它的一半为21,而奇数不可能通过偶数求和得到,所以只剩下6个偶数时,不能按第(1)小题的要求来做.

查看答案和解析>>

作业宝钟面数字问题
如图,钟面上有1,2,3,…,11,12这12个数字.
(1)试在某些数的前面添加负号,使它们的代数和为零
(2)能否改变钟面上的数,比如只剩下6个偶数,仍按第(1)小题的要求来做?
[思路探究]
(1)我们先试着选定任意几个数字,在其前面添加负号,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
这当然不是我们要的答案,但我们可以将其调整,比如改变1前面的符号,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用这种方法当然可以得到许多答案,但我们并不满足.我们希望寻找其中的规律,使我们能找到更多的解答.我们发现:
在调整符号的过程中,若将一个正数变号,12个数的代数和就减少这个正数的两倍;若将一个负数变号,12个数的代数和就增加这个负数的绝对值的两倍.
要使12个数的代数和为零,其中正数的和的绝对值必须与负数的和的绝对值相等,均为12个数之和的-半,即等于39.
由此,我们只要找到几个和为39的数,将这些数添上负号即可.
由于最大3个数之和为33<39,因此必须再添上一个6才有解答,所以添加负号的数至少要有4个.同理可知,添加负号的数最多不超过8个.
根据以上规律,就能在很短的时间内得到许多解答,但是要写出所有解答,还必须把答案作适当的分类.本题共有124个解答,亲爱的读者,你能写出这124个解答来吗?
(2)因为2+4+6+8+10+12-42,它的一半为21,而奇数不可能通过偶数求和得到,所以只剩下6个偶数时,不能按第(1)小题的要求来做.

查看答案和解析>>

在数学文化节第一轮活动中,我们以探讨一个趣题的方式纪念了数学大师欧拉诞辰300周年.著名数学家拉普拉斯说过:“读读欧拉,他是我们所有人的导师.”是啊!欧拉在数学上的贡献实在太多了,即使在初等数学中也到处可见他的身影.我们再来看看欧拉研究过的“36军官问题”:
从6支部队中各选出6名不同军衔的军官,将这36名军官排成一个6行6列的方阵,要求每行每列的6个军官分别来自不同的部队,并具有不同的军衔.用大写字母A,B,C,D,E,F分别表示6支不同的部队,用小写字母a,b,c,d,e,f分别表示6种不同的军衔,于是问题转化为:在6×6的方格阵中,每个方格分别填入一个大写字母和一个小写字母,使每行和每列中的大小写字母只能各出现一次(通常称这种方阵为欧拉方阵或正交拉丁方).欧拉搅尽脑汁,也没能排出符合要求的6×6方阵,他猜想并不存在这样的6×6方阵.100多年以后,才有人证明了欧拉的这个猜想是正确的.
于是欧拉继而探究了其他情形,例如,他分别作出了3×3,4×4,5×5正交拉丁方,并证明了当n除以4的余数不等于2时,n×n正交拉丁方是存在的.
正交拉丁方在药品配方试验设计等方面有着广泛应用.现在流行的“数独”游戏和比赛,就是发源于拉丁方问题呢!
如图是一个5×5正交拉丁方,请将剩余的字母填上

查看答案和解析>>


同步练习册答案