(1)易证△ABE≌△BCD(SAS) 所以∠BAE=∠CBD 所以∠AD=∠ABP+∠ABAE=∠ABP+∠ACBD=∠ABC=60度 (2)90度.108度 (3)解:∠APD=∠ABC= 查看更多

 

题目列表(包括答案和解析)

题目:如图1,△ABD,△AEC都是等边三角形,求证:BE=DC.由已知易证△ABE≌△ADC,得BE=DC.

扩变:
1.如图2,若△ABD,△AEC都是等腰直角三角形,∠D=∠E=90°,那么 BE=DC吗?
2.如图3,若四边形ABFD、四边形ACGE都是正方形,(1)那么 BE=DC还成立吗?(2)BE⊥DC.
3.如图4,若点A在线段BC上,△ABD,△AEC都是等边三角形,那么BE=DC吗?
4.在3题的条件下,若AD与BE交于F点,AE与CD交于G点,如图5.
(1)AF=AG吗?
(2)△AFG是等边三角形吗?为什么?

查看答案和解析>>

题目:如图1,△ABD,△AEC都是等边三角形,求证:BE=DC.由已知易证△ABE≌△ADC,得BE=DC.

精英家教网

扩变:
1.如图2,若△ABD,△AEC都是等腰直角三角形,∠D=∠E=90°,那么 BE=DC吗?
2.如图3,若四边形ABFD、四边形ACGE都是正方形,(1)那么 BE=DC还成立吗?(2)BE⊥DC.
精英家教网

3.如图4,若点A在线段BC上,△ABD,△AEC都是等边三角形,那么BE=DC吗?
4.在3题的条件下,若AD与BE交于F点,AE与CD交于G点,如图5.
(1)AF=AG吗?
(2)△AFG是等边三角形吗?为什么?

查看答案和解析>>

题目:如图1,△ABD,△AEC都是等边三角形,求证:BE=DC.由已知易证△ABE≌△ADC,得BE=DC.

扩变:
1.如图2,若△ABD,△AEC都是等腰直角三角形,∠D=∠E=90°,那么 BE=DC吗?
2.如图3,若四边形ABFD、四边形ACGE都是正方形,(1)那么 BE=DC还成立吗?(2)BE⊥DC.
3.如图4,若点A在线段BC上,△ABD,△AEC都是等边三角形,那么BE=DC吗?
4.在3题的条件下,若AD与BE交于F点,AE与CD交于G点,如图5.
(1)AF=AG吗?
(2)△AFG是等边三角形吗?为什么?

查看答案和解析>>

(2013•瑶海区一模)如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.

(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立;
(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点.则EA=EF是否成立?若成立,请说明理由.
(3)由题干和(1)(2)你可以得出什么结论.

查看答案和解析>>

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>


同步练习册答案