20..B三点在同一条直线上 (1)求a的值, (2)求直线AB与坐标轴围成的三角形的面积 查看更多

 

题目列表(包括答案和解析)

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=
1
2x
的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)点E坐标是
(a,1-a)
(a,1-a)
,点F坐标是
(1-b,b)
(1-b,b)
(用含a的代数式表示点E的坐标,用含b的代数式表示点F的坐标)
(2)求△OEF的面积(结果用含a、b的代数式表示);
(3)△AOF与△BOE是否相似?若相似,请证明;若不相似,请简要说明理由.
(4)当点P在曲线y=
1
2x
上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角,并求出此角的大小,同时证明你的结论.

查看答案和解析>>

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=数学公式的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)点E坐标是______,点F坐标是______(用含a的代数式表示点E的坐标,用含b的代数式表示点F的坐标)
(2)求△OEF的面积(结果用含a、b的代数式表示);
(3)△AOF与△BOE是否相似?若相似,请证明;若不相似,请简要说明理由.
(4)当点P在曲线y=数学公式上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角,并求出此角的大小,同时证明你的结论.

查看答案和解析>>

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)点E坐标是______,点F坐标是______(用含a的代数式表示点E的坐标,用含b的代数式表示点F的坐标)
(2)求△OEF的面积(结果用含a、b的代数式表示);
(3)△AOF与△BOE是否相似?若相似,请证明;若不相似,请简要说明理由.
(4)当点P在曲线y=上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角,并求出此角的大小,同时证明你的结论.

查看答案和解析>>

(2002•曲靖)阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.


查看答案和解析>>

(2002•曲靖)阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.


查看答案和解析>>


同步练习册答案