7.如图.A.B.C为反比例函数图像上的三个点.分别 从A.B.C向xy轴作垂线.构成三个矩形.它们的面积 分别是S1.S2.S3.则S1.S2.S3的大小关系是 A:S1=S2>S3 B:S1<S2<S3 C:S1>S2>S3 D:S1=S2=S3 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,点P在反比例函数y=
1
x
(x>0)的图象上,且横坐标为2.若将点P先向右平移两个单位,再向上平移一个单位后所得的像为点P′.则在第一象限内,经过点P′的反比例函数图象的解析式是(  )
A、y=-
5
x
(x>0)
B、y=
5
x
(x>0)
C、y=-
6
x
(x>0)
D、y=
6
x
(x>0)

查看答案和解析>>

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

如图,点P是反比例函数y=的图像上的一点,过点p分别向x轴、y轴作垂线,得到矩形AOBP.如果这个矩形的面积是3,那么这个反比例函数的解析式为

[  ]

A.y=
B.y=-
C.y=-
D.y=-

查看答案和解析>>

如图,过x轴正半轴任意一点P作x轴的垂线,分别与反比例函数y1=和y2=的图像交于点A和点B.若点C是y轴上任意一点,连结AC、BC,则△ABC的面积为

A.1        B.2          C.3         D.4

 

查看答案和解析>>

如图,已知一次函数y=kx+b与反比例函数y=的图像交点坐标为(2,4)、(-4,-2),点(a1,b)(a2,b)分别为一次函数和反比例函数图像上的一点,且a1>a2,则b的取值范围是   .

查看答案和解析>>


同步练习册答案