5.如图.将一张矩形纸片ABCD先折出一条对角线AC.再将点A与点C重合折出折痕EF.最后分别沿AE.CF折叠.得到的四边形AECF是什么样的四边形?试证明你的猜想.与第3题对照.你有什么发现? 查看更多

 

题目列表(包括答案和解析)

如图,将一张矩形纸片ABCD先折出一条对角线AC,再将点A与点C重合折出折痕EF,最后分别沿AE、CF折叠,得到的四边形AECF是什么样的四边形?试证明你的猜想。

查看答案和解析>>

如图①,四边形ABCD是一张矩形纸片,∠BAC=α(0°<α≤45°),现将其折叠,使点A、C重合.

(1)先用一张矩形纸片尝试折叠,并在图上画出折叠痕EF;

(2)设AC=x,EF=y,求出y与x之间的函数关系式;

(3)如图②,当45°<α<90°时,求得的函数关系式是否和①中求得的函数关系式相同?

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
精英家教网
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
作业宝
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=数学公式有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求数学公式的值.

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.

探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y= 有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求 的值.

查看答案和解析>>


同步练习册答案