如图,菱形ABCD的边长为12cm,∠ABC=30°,E为AB上一点,且AE=4cm,动点P从B点出发,以1cm/s的速度沿BC边向点C运动,PE交射线DA于点M,设运动时间为t(s).
(1)当t为何值时,△MAE的面积为3cm
2?
(2)在点P出发的同时,动点Q从点D出发,以1cm/s的速度沿DC边向点C运动,连接MQ、PQ,试求△MPQ的面积S(cm
2)与t(s)之间的函数关系式,并求出当t为何值时,△MPQ的面积最大,最大值为多少?
(3)连接EQ,则在运动中,是否存在这样的t,使得△PQE的外心恰好在它的一边上?若存在,请直接写出满足条件的t的个数,并选择其一求出相应的t的值;若不存在,请说明理由.