题目列表(包括答案和解析)
(本题满分12分)
【小题1】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)
【小题2】(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
【小题3】(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
(本题满分12分)已知二次函数的图象经过点P(-2,5)
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设在这个二次函数的图象上,
①当m=4时,能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,一定能作为同一个三角形三边的长,请说明理由。
(本题满分12分)已知二次函数的图象经过点P(-2,5)
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设在这个二次函数的图象上,
①当m=4时,能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,一定能作为同一个三角形三边的长,请说明理由。
(本小题满分12分)已知:抛物线与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com