如果一元二次方程ax2-bx+c=0有一个根为0.则c= ; 关于x的一元二次方程2x2-ax-a2=0有一个根为-1.则a= 查看更多

 

题目列表(包括答案和解析)

有一根为1的一元二次方程

对于关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

由于a+b+c=0,则c=-a-b

将c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

有一根为1的一元二次方程

  对于关于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

  由于a+b+c=0,则c=-a-b

  将c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1﹒x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=
参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值。

查看答案和解析>>

x1x2是关于一元二次方程ax2bxc(a≠0)的两个根,则方程的两个根x1x2和系数abc有如下关系:x1x2=-x1x2.把它称为一元二次方程根与系数关系定理.如果设二次函数yax2bxc(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到AB连个交点间的距离为:AB=|x1x2|=

参考以上定理和结论,解答下列问题:

设二次函数yax2bxc(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

x1x2是关于一元二次方程ax2bxc(a≠0)的两个根,则方程的两个根x1x2和系数ab、c有如下关系:x1x2=-x1·x2.把它称为一元二次方程根与系数关系定理.如果设二次函数yax2bxc(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到AB连个交点间的距离为:

AB=|x1x2|=

参考以上定理和结论,解答下列问题:

设二次函数yax2bxc(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>


同步练习册答案