9.有理数.满足:.. .且.则的最大值是( ) A.1, B.2, C.3, D.5 查看更多

 

题目列表(包括答案和解析)

随着人们对健康认知度的提高,人们对食品的健康要求也越来越高,我市对食品安全检查的力度也越来越强.某一奶制品企业经销某种牛奶,已知每箱牛奶的成本为40元,其每个月的销量y(万箱)与销售单价x(元)的关系如下表所示(x为5的倍数,且x≤80元).
售价x
(元)
6065707580
月销量y
(万箱)
65.554.54
又已知该企业每月销售该种牛奶的总开支z(万元)(不含牛奶成本)与销量y(万箱)存在函数关系:z=10y+42.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求出月销量y与售价x之间的函数关系式;
(2)当售价定为何值时,月销售利润最大?且最大是多少?
(3)到今年2月底止,该企业都在获得最大利润的基础上进行销售,从今年3月份开始,该企业为满足人们需要,积极响应市里号召,停止生产该种牛奶准备加工生产一种高优质牛奶,于是采取了一系列优化措施,其中添置生产处理设备共250万元,并增加安全技术人员50名,这样每月的总开支(不含牛奶成本)将比2月份增加5万元,而一箱牛奶的成本比原来增加了25%,但该企业为了促销新品种牛奶,3月份每箱牛奶的售价却比2月份下降了25%,3月的销量比2月增加了40%,到了4月份取消促销活动,每箱牛奶的价格在3月份的基础上增加了n%,销量在3月份的基础上增加了0.25n%,以这样的销售持续到5月底,则从2月到5月共获利润295万元,试估计n的整数值.(322=1024,332=1089,342=1156)

查看答案和解析>>

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>


同步练习册答案