如图.设O是等边三角形ABC内一点. 已知∠AOB=115°.∠BOC=125°.则以 OA.OB.OC为边所构成的三角形的各内 角的度数分别为 . 查看更多

 

题目列表(包括答案和解析)

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=
 
;(用含有x的代数式表示)精英家教网
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=______;(用含有x的代数式表示)
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
① 设矩形的一边FG=x,那么EF=(      ).(用含有x的代数式表示)
② 设矩形的面积为y,当x取何值时,y的值最大?最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

如图,已知等边三角形ABC的边长为2,ADBC边上的高.

⑴在△ABC内部作一个矩形EFGH(如图①),其中EH分别在边ABAC上,FG在边BC上.

① 设矩形的一边FG=x,那么EF=     ▲      .(用含有x的代数式表示)

② 设矩形的面积为y,当x取何值时,y的值最大?最大值是多少?

⑵当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

 


查看答案和解析>>

等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:

如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可证:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
将上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案