15.如右图.在⊙O中.AB为直径.∠ACB的平分线交⊙O于D. 则∠ABD= °. 查看更多

 

题目列表(包括答案和解析)

如图①,直线AMAN,⊙O分别与AMAN相切于BC两点,连结OCBC,则有∠ACB=∠OCB;(请思考:为什么?)如果测得ABa,则可知⊙O的半径ra.(请思考:为什么?)

(1)将图①中直线AN向右平移,与⊙O相交于C1C2两点,⊙OAM的切点仍记为B,如图②.请你写出与平移前相应的结论,并将图②补充完整;判断此结论是否成立,且说明理由.

(2)在图②中,若只测得ABa,能否求出⊙O的半径r?若能求出,请你用a表示r;若不能求出,请补充一个条件(补充条件时不能添加辅助线,若补充线段请用b表示,若补充角请用α表示),并用a和补充的条件表示r

查看答案和解析>>

精英家教网如图所示,在平面直角坐标系xOy中,已知点A(-
94
,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.
(1)求∠ACB的度数;
(2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

查看答案和解析>>

如图所示,在平面直角坐标系O中xy,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C。
(1)求∠ACB的度数;
(2)已知抛物线线y=ax2+bx+3过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形,若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由。

查看答案和解析>>

如图所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3)点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C。

(1)求角ACB的度数;

(2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式;

(3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由。

                             

查看答案和解析>>

如图,在Rt△ABC中,∠ACB=90°,AC=6cm ,BC=6cm,经过A,B的直线l以1cm/秒的速度向下作匀速平移运动,交BC于点B′,交CD于点 D′,与此同时,点P从点B′ 出发,在直线l上以1cm/秒的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.

(1)你求出的AB的长是     
(2)过点C作CD⊥AB于点D,t为何值时,点P移动到CD上?
(3)t为何值时,以点P为圆心、1cm为半径的圆与直线CD相切?
(4)以点P为圆心、1 cm为半径的⊙P与CD所在的直线相交时,是否存在点P与两个交点构成的三角形是等边三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案