如图.已知AB∥DE,AB=DE,AC=DF.请问图中共有哪几对三角形全等?并任选其中一对给予证明. 查看更多

 

题目列表(包括答案和解析)

如图(1),我们将相同的两块含30°角的直角三角尺Rt△DEF与Rt△ABC叠合,使DE在AB上,DF过点C,已知AC=DE=6。将图(1)中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图(2)。
(1)求证:△CQD∽△APD
(2)连结PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(3)将图(1)中的△DEF 向左平移(A、D不重合),使边FD、FE分别交AC、BC于点M、N,如图(3),连结MN,试问△MCN面积是否存在最大值、如不存在,请说明理由;如存在请求出S△MCN 的最大值,

查看答案和解析>>

如图(1),我们将相同的两块含30°角的直角三角尺Rt△DEF与Rt△ABC叠合,使DE在AB上,DF过点C,已知AC=DE=6。将图(1)中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图(2)。

(1)求证:△CQD∽△APD

(2)连结PQ,设AP=x,求面积S△PCQ 关于x的函数关系式;

(3)将图(1)中的△DEF 向左平移(A、D不重合),使边FD、FE分别交AC、BC于点M、N,如图(3),连结MN,试问△MCN面积是否存在最大值、如不存在,请说明理由;如存在请求出S△MCN 的最大值,

 

查看答案和解析>>

 已知△ABC中,∠C=90°,AC=BC=2,

(1)如图1,如果点D,点E分别在边AC,BC上移动,在移动过程中保持CD=BE, 请判断△PDE的形状(无需说明理由)

(2)如图2,如果点D,点E分别在AC,CB的延长线上移动,在移动过程中仍保持CD=BE,请问:(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由。

(3)如图3,将一块与△ABC全等的三角板如图放置(DE边与CB边重合),现将三角板绕点C顺时针旋转,当DF边与CA边重合时停止,不考虑起始和结束时情形,设DE,DF

(或它们的延长线)分别交AB(或它的延长线)于G,H点(可参考图4),问BG长为多少时,△CGH是等腰三角形?(只需直接写出BG值)


图1                                         图2

 

图3                                                 图4

 


查看答案和解析>>

如图(1),我们将相同的两块含30°角的直角三角尺Rt△DEF与Rt△ABC叠合,使DE在AB上,DF过点C,已知AC=DE=6。将图(1)中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图(2)。
(1)求证:△CQD∽△APD
(2)连结PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(3)将图(1)中的△DEF 向左平移(A、D不重合),使边FD、FE分别交AC、BC于点M、N,如图(3),连结MN,试问△MCN面积是否存在最大值、如不存在,请说明理由;如存在请求出S△MCN 的最大值,

查看答案和解析>>

(1)阅读理解:
课外兴趣小组活动时,老师提出了如下问题: 如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4。
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中。
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF。
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明。
(3)问题拓展:
如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明。

查看答案和解析>>


同步练习册答案