30.如图圆A为圆心在直线y=上的一动 圆.其半径为2.(1)求圆A与x轴.y轴相切时圆心的坐标,(2)求OA的最小值. 查看更多

 

题目列表(包括答案和解析)

如图:在平面直角坐标系xOy中,矩形OABC的边OA在x轴上,顶点B(4,2)在抛物线y精英家教网=ax2+bx上,且抛物线交x轴于另一点D(6,0),抛物线的对称轴交BC边于E,直线AE分别交y轴于F、交OB于P.
(1)求抛物线对应的二次函数解析式;
(2)若以点O为圆心,OP为半径作⊙O,试判断AE与⊙O的位置关系,并说明理由;
(3)若动直线MN⊥x轴于N交抛物线于M,且在y轴的右侧运动,是否存在点M使得△AMN与△ABP相似?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.
(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)
(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;
(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.

查看答案和解析>>

如图,已知抛物线y=px2-1与两坐标轴分别交于点A、B、C,点D坐标为(0,-2),△ABD为直角三角形,l为过点D且平精英家教网行于x轴的一条直线.
(1)求p的值;
(2)若Q为抛物线上一动点,试判断以Q为圆心,QO为半径的圆与直线l的位置关系,并说明理由;
(3)是否存在过点D的直线,使该直线被抛物线所截得的线段是点D到直线与抛物线两交点间得两条线段的比例中项?如果存在,请求出直线解析式;如果不存在,请说明理由.

查看答案和解析>>

如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,精英家教网3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A精英家教网,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:
 

查看答案和解析>>


同步练习册答案