顶点在x轴上.对称轴方程x=-3.且经过点. 查看更多

 

题目列表(包括答案和解析)

如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2,2),求实数m的值.

(2)在(1)的条件下,求△BCE的面积.

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标.

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9),

(1)求出抛物线的解析式;

(2)写出抛物线的对称轴方程及顶点坐标;

(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴,对称,求m的值及点Q的坐标;

(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.

查看答案和解析>>

已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧).

(1)直接写出抛物线对称轴方程;

(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;

(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请求出a,b满足的关系式;若不能,说明理由.

查看答案和解析>>

已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含有m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式”的解法如下:

由(1)知,对称轴与x轴交于点D(________,0).

∵抛物线具有对称性,且AB=2

∴AD=DB=|xA-xD|=

∵A(xA,0)在抛物线y=(x-h)2+k上,

∴(xA-h)2+k=0.    ①

∵h=xC=xD

∴将|xA-xD|=代入①,得到关于m的方程0=()2+(________).  ②

补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

(3)将(2)中条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.

查看答案和解析>>


同步练习册答案