题目列表(包括答案和解析)
(本题满分10分)如图,阳春三月里小黄同学在操场上放风筝,风筝从A处起飞,几分钟后便飞到C处,此时,在AQ的延长线上B处的小宋同学发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.
1. (1)已知旗杆高10米,若在B处测得旗杆顶点P的仰角为30°,在A处测得点P的仰角为45°,试求A、B之间的距离.
2. (2)此时,在A处背向旗杆又测得风筝的仰角为75°,若将绳子在空中视为一条线段,求绳子的长度AC(结果保留根号).
(本题满分10分)如图,阳春三月里小黄同学在操场上放风筝,风筝从A处起飞,几分钟后便飞到C处,此时,在AQ的延长线上B处的小宋同学发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.
1. (1)已知旗杆高10米,若在B处测得旗杆顶点P的仰角为30°,在A处测得点P的仰角为45°,试求A、B之间的距离.
2. (2)此时,在A处背向旗杆又测得风筝的仰角为75°,若将绳子在空中视为一条线段,求绳子的长度AC(结果保留根号).
(本小题满分10分)
如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D,∠B = 30°.
求证:1.(1)AD平分∠BAC,2.(2)若BD = ,求B E的长.
(本小题满分10分)
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( )A. B.1 C. D.2
(2)对于,∠A的正对值sad A的取值范围是 .
(3)已知,其中为锐角,试求sad的值.
(本小题满分10分)
数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即 “以形助数”。
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=900,CD⊥AB,D为垂足。易证得两个结论:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D为垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。
(2)请你用数形结合的“以形助数”思想来解: 设a、b、c、d都是正数,满足a:b=c:d,且a最大。求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com