[8分]已知:二次函数 求证:不论a取何值时,抛物线与x轴都有两个不同的交点. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知关于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求证:不论m取何值时,方程总有两个不相等的实数根.
(2)若直线y=(m-1)x+3与函数y=x2+m的图象C1的一个交点的横坐标为2,求关于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的条件下,将抛物线y=x2-(m-1)x+m-3绕原点旋转180°,得到图象C2,点P为x轴上的一个动点,过点P作x轴的垂线,分别与图象C1、C2交于M、N两点,当线段MN的长度最小时,求点P的坐标.

查看答案和解析>>

已知关于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求证:不论m取何值时,方程总有两个不相等的实数根.
(2)若直线y=(m-1)x+3与函数y=x2+m的图象C1的一个交点的横坐标为2,求关于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的条件下,将抛物线y=x2-(m-1)x+m-3绕原点旋转180°,得到图象C2,点P为x轴上的一个动点,过点P作x轴的垂线,分别与图象C1、C2交于M、N两点,当线段MN的长度最小时,求点P的坐标.

查看答案和解析>>

(2010•石景山区二模)已知关于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求证:不论m取何值时,方程总有两个不相等的实数根.
(2)若直线y=(m-1)x+3与函数y=x2+m的图象C1的一个交点的横坐标为2,求关于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的条件下,将抛物线y=x2-(m-1)x+m-3绕原点旋转180°,得到图象C2,点P为x轴上的一个动点,过点P作x轴的垂线,分别与图象C1、C2交于M、N两点,当线段MN的长度最小时,求点P的坐标.

查看答案和解析>>

已知:一元二次方程

(1)求证:不论k为何实数时,此方程总有两个实数根;

(2)设k<0,当二次函数的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式;

(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?

如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.

(1)求证:

(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;

(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.

查看答案和解析>>

已知关于x的一元二次方程数学公式
(1)求证:无论m取任何实数,方程都有两个实数根;
(2)当m<3时,关于x的二次函数数学公式的图象与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,且2AB=3OC,求m的值;
(3)在(2)的条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线数学公式与图象G只有一个公共点时,b的取值范围.

查看答案和解析>>


同步练习册答案