4.注意 (1)圆与圆的五种位置关系相交和相切是重点,(2)在解题中把两个圆中有关问题利用圆的性质和直线圆的位置关系的定理和性质转化为一般圆的问题,(3)涉及相交两圆的问题常可作出公共弦.利用圆周角定理及其推论或连心线垂直乎分公共弦.公共弦可沟通两个圆的角之间关系.有了连心线.公共弦不仅可取应用相交两圆的性质定理且还能沟通两圆半径.公切线等之间的关系,(4)涉及相切两圆问题主要可从以下几个方面考虑,①过切点作两圆的公切线.利用弦切角定理或切线长定理,②作出连心线.利用连心线过切点的性质,③利用两圆的圆心距等于两圆半径之和或之差,④当两圆外切时.利用连心线.外公切线及过公切线切点的两条毕径组成的直角梯形.将有关圆的间题转化为直线形间题.把梯形问题转化为直角三角形问题.通过解直角三角形来解决有关两圆公切线等问题. 考查重点与常甩题型: 查看更多

 

题目列表(包括答案和解析)

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1______数学公式; ②数学公式______数学公式③8+8______数学公式
通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b______数学公式
(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵数学公式,∴数学公式,∴数学公式,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:数学公式,并指出等号成立时的条件.

(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为______cm.
(注意:包扎时背面也有带子,打结处长度忽略不计)

查看答案和解析>>

实验探究:为发挥广大读者艺术特长,我报《数学专页》于2006年1月份举办了一次栏标设计大赛,截至4月份大赛已圆满结束.本次比赛收到了近千幅设计作品,其中一幅参赛作品如图.
同学们,你注意到栏标中的三个圆了吗?现依据三个圆的大小,剪了三张圆形纸片,它们的面积分别记为S1,S2,S3,借助课桌,不给你任何工具,你能比较出S1+S2与S3的大小关系吗?写出你的方法步骤,并说明理由.

查看答案和解析>>

如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=
3
:3?若存在,请求出此时点P的坐精英家教网标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

查看答案和解析>>

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b
 
2
ab

(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:a+b≥2
ab
,并指出等号成立时的条件.
精英家教网
(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为
 
cm.
(注意:包扎时背面也有带子,打结处长度忽略不计)
精英家教网

查看答案和解析>>

如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=:3?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

查看答案和解析>>


同步练习册答案