2.对函数y= - 当x>0时.y随x的增大而 . 查看更多

 

题目列表(包括答案和解析)

(2012•佛山)规律是数学研究的重要内容之一.
初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.
请你解决以下与数的表示和运算相关的问题:
(1)写出奇数a用整数n表示的式子;
(2)写出有理数b用整数m和整数n表示的式子;
(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).
下面对函数y=x2的某种数值变化规律进行初步研究:
xi 0 1 2 3 4 5
yi 0 1 4 9 16 25
yi+1-yi 1 3 5 7 9 11
由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5…
请回答:
①当x的取值从0开始每增加
1
2
个单位时,y的值变化规律是什么?
②当x的取值从0开始每增加
1
n
个单位时,y的值变化规律是什么?

查看答案和解析>>

对函数y=-x+1与函数y=
3
x
,下列表述中正确的是(  )
A、两个函数都经过第二象限
B、两个函数在自变量的取值范围内y都随x的减小而减小
C、两个函数在第一象限内有两个公共点
D、当x<0时,函数y=-x+1的值大于函数y=
3
x
的值

查看答案和解析>>

某校数学课外活动探究小组,在教师的引导下,对“函数y=x+
k
x
(x>0,k>0)
的性质”作了如下探究:
因为y=x+
k
x
=(
x
)2-2
x
k
x
+(
k
x
)2+2
k
=(
x
-
k
x
)2+2
k

所以当x>0,k>0时,函数y=x+
k
x
有最小值2
k
,此时
x
=
k
x
x=
k

借助上述性质:我们可以解决下面的问题:
某工厂要建造一个长方体无盖污水处理池,其容积为4800m3,深为3m,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,问怎样设计水池能使总造价最低,最低总造价为
297 600
297 600
元.

查看答案和解析>>

一天,骡子和驴子驮着酒囊走在路上,因为酒囊重量所压迫,驴子痛苦地抱怨着,骡子听到后说:“抱怨的应该是我才对呀!因为如果你给我1袋酒,我驮的重量就是你的2倍;若你从我这儿拿去1袋,那么你我驮的重量才相等呀!”驴子听了骡子的话,心情好了许多.好不容易到了目的地,准备把酒倒在一个不规则的酒缸里;已知每袋酒的体积是1升,酒缸的高度为1米,其中酒缸所盛酒的体积V(升)与液面高度h(米)满足如下的函数关系:当0≤h≤0.5时,V1=-8h2+20h;当0.5≤h≤1时,V2=20h-2.聪明的同学,请问:
(1)骡子和驴子各驮了几袋酒囊?
(2)酒缸能否盛得下骡子和驴子所驮的酒?如果能,请计算出酒在酒缸里的液面高度;如果不能,请说明理由.

查看答案和解析>>

某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

查看答案和解析>>


同步练习册答案