逆命题: 图形 已知: 求证: 证明 查看更多

 

题目列表(包括答案和解析)

我们知道命题“在直角三角形中,如果有一个内角为30°,那么这个30°的内角所对的直角边等于斜边的一半.”是真命题.
(1)请写出上面命题的逆命题:在直角三角形中,如果
有一条直角边等于斜边的一半,
有一条直角边等于斜边的一半,
,那么
这条直角边所对的内角等于30°
这条直角边所对的内角等于30°

(2)你写出的逆命题是真命题吗?如果是,请写出证明过程,如若不是,请举出反例.(书写证明过程前,要结合图形写出已知、求证;若是举反例,也要结合反例图作出说明)

查看答案和解析>>

我们知道命题“在直角三角形中,如果有一个内角为30°,那么这个30°的内角所对的直角边等于斜边的一半.”是真命题.
(1)请写出上面命题的逆命题:在直角三角形中,如果______,那么______.
(2)你写出的逆命题是真命题吗?如果是,请写出证明过程,如若不是,请举出反例.(书写证明过程前,要结合图形写出已知、求证;若是举反例,也要结合反例图作出说明)

查看答案和解析>>

(1)阅读理解:
课外兴趣小组活动时,老师提出了如下问题: 如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4。
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中。
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF。
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明。
(3)问题拓展:
如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明。

查看答案和解析>>

如图,已知平行四边形ABCD,E是对角线AC延长线上的一点,
(1)若四边形ABCD是菱形,求证:BE=DE;
(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,试给出证明;若是假命题,试举出反例.

查看答案和解析>>

如图,已知平行四边形ABCD,E是对角线AC延长线上的一点,
(1)若四边形ABCD是菱形,求证:BE=DE;
(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,试给出证明;若是假命题,试举出反例.

查看答案和解析>>


同步练习册答案