21. 已知:△ABC 求作:作△DBC.使△DBC和△ABC全等.请作出所有满足条件的全等三角形. (要求:用尺规作图.保留作图痕迹.不写作法.不要求证明). 查看更多

 

题目列表(包括答案和解析)

(本题满分10分,其中第(1)小题6分,第(2)小题4分)

如图,已知在△ABC中,点D在边AC上,CDAD=1∶2,

1.(1)试用向量表示向量

2.(2)求作:.(不要求写作法,但要指出所作

图中表示结论的向量)

 

 

查看答案和解析>>

(本题满分10分,其中第(1)小题6分,第(2)小题4分)

如图,已知在△ABC中,点D在边AC上,CDAD=1∶2,

1.(1)试用向量表示向量

2.(2)求作:.(不要求写作法,但要指出所作

图中表示结论的向量)

 

 

查看答案和解析>>

(本小题满分10分)

    学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(   )A.       B.1  C.      D.2

 

(2)对于,∠A的正对值sad A的取值范围是        .

(3)已知,其中为锐角,试求sad的值.

 

 

查看答案和解析>>

(本小题满分10分)
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad 的值为(  )
A.B.1C.D.2
(2)对于,∠A的正对值sad A的取值范围是        .
(3)已知,其中为锐角,试求sad的值.

查看答案和解析>>

(本小题满分10分)

    学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(   )A.       B. 1  C.      D. 2

 

(2)对于,∠A的正对值sad A的取值范围是         .

(3)已知,其中为锐角,试求sad的值.

 

 

查看答案和解析>>


同步练习册答案