如图AB为⊙O一固定直径.自上半园上一点C作弦CD⊥AB.∠OCD平分线交⊙O于P.当点C在上半园上移动时.点P ( ) A.到CD距离不变 B.位置不变 C.平分弧BD D.平分弧AB 查看更多

 

题目列表(包括答案和解析)

23、取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′.

①当α为多少度时,AB∥DC?
②当旋转到图③所示位置时,α为多少度?
③连接BD,当0°<α≤45°时,探求∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.

查看答案和解析>>

(1)善于思考的小迪发现:半径为a,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与y轴平行的弦都压缩到原来的
b
a
倍,就得到一种新的图形-椭圆(如图2).她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”、“化曲为直,以直代曲”的方法,正确地求出了椭圆的面积,她求得的结果为
 

(2)小迪把图2的椭圆绕x轴旋转一周得到一个“精英家教网鸡蛋型”的椭球.已知半径为a的球的体积为
4
3
πa3,则此椭球的体积为
 

查看答案和解析>>

善于思考的小迪发现:半径为a,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与y轴平行的弦都压缩到原来的
ba
倍,就得到一种新的图形------椭圆(如图2),她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”“化曲为直,以直代曲”的方法.正确地求出了椭圆的面积,她求得的结果为
 

精英家教网

查看答案和解析>>

取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′。
①当α为多少度时,AB∥DC?
②当旋转到图③所示位置时,α为多少度?
③连接BD,当0°<α≤45°时,探求∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明。

查看答案和解析>>

(1)善于思考的小迪发现:半径为a,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与y轴平行的弦都压缩到原来的倍,就得到一种新的图形-椭圆(如图2).她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”、“化曲为直,以直代曲”的方法,正确地求出了椭圆的面积,她求得的结果为   
(2)小迪把图2的椭圆绕x轴旋转一周得到一个“鸡蛋型”的椭球.已知半径为a的球的体积为πa3,则此椭球的体积为   

查看答案和解析>>


同步练习册答案