题目列表(包括答案和解析)
阅读下列短文,并填空:
奇偶分析一例整数分为两类:奇数和偶数.
奇数可以写成2n+1,偶数可以写成2n,这里n是任何一个整数.
偶数又可分为两类:一类能被4整除,可以写成4n;一类只能被2整除,不能被4整除,可以写成4n+2.这里n是任何一个整数.
在上一节的阅读材料“平方差”中,我们知道2n+1和4n都能表示成两个平方数的差,剩下的4n+2形式的数,能不能表示成两个平方数的差呢?
假设4n+2能写成两个平方数的差,即有
4n+2=x2-y2, ①
其中x、y都是整数,那么,
4n+2=(x+y)(x-y). ②
这时有两种情况:
1.x、y的奇偶性相同.
在这种情况下,x+y,x-y都是________数,从而(x+y)(x-y)是________的倍数,但②的左边的4n+2不是________的倍数,产生矛盾.
2.x、y的奇偶性不相同.
在这种情况下,x+y,x-y都是________数,从而(x+y)(x-y)也是________数,但②的左边4n+2是________数,仍然产生矛盾.
因此,不论哪种情况都会产生矛盾.这表明①与②不能成立,也就是说4n+2不能表示成两个平方数的差.
(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:
①所调查的七年级50名学生在这个月内做好事次数的平均数是____,众数是_____,极差是 ___
②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.
(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.
①用“树状图法”或“列表法”表示所有可能出现的结果;
②取出的两个小球上所写数字之和是偶数的概率是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com