题目列表(包括答案和解析)
(本题满分10分)
为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图24-1是去年这50户家庭月总用水量的折线统计图,图24-2是去年这50户家庭月总用水量的不完整的频数分布直方图.
(1)根据图24-1提供的信息,补全图24-2中的频数分布直方图;(3分)
(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 立方米,众数
是 立方米,中位数是 立方米;(3分)
(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少立方米?(4分)
.(本题满分10分)已知,.
⑴ 当x取何值时,y1=y2? ⑵当x取何值时,y1比2y2大3?
(11·永州)(本题满分10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数
y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、
B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
(本题满分10分)已知抛物线与x轴有两个不同的交点.
1.(1) 求抛物线的对称轴;
2.(2) 求c的取值范围;
3.(3)若此抛物线与x轴两交点之间的距离为2,求c的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com