2.坐标轴上点的坐标特征: 点P 所在的位置 轴 轴 原点 点P的坐标 查看更多

 

题目列表(包括答案和解析)

两条坐标轴直交把平面分为四个象限、四个半轴及一个原点共九个部分,各部分中点的坐标特点(为正、负或0)有所不同.

(1)九部分中的点的坐标特征如何?

(2)填空:

①若M(-m,-m)在第一象限,则F(-m2,-2m)在第________象限.

②若K(a,-b)在第三象限,则L(-a,ab)在第________象限.

③若A1(x,y)在第三象限,则A2(-x,y),A3(-x,-y),A4(x,-y)依次在第________,________,________象限.

④若ab>0,则(a,b)在________象限,若(a,b)在二或四象限,则________0.

⑤若ab=0,则点(a,b)必定在________上.

查看答案和解析>>

23、△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小.位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>

△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.

查看答案和解析>>


同步练习册答案