6.点P坐标的几何意义: ⑴点P到轴的距离为, ⑵点P到轴的距离为, ⑶点P到原点的距离为. 查看更多

 

题目列表(包括答案和解析)

如图1,在Rt△ABC中,∠C=90°,BC=8cm,点D在AC上,CD=3cm.P,Q两点分别从A,C两点同时出发,点P沿AC向点C匀速运动,速度为每秒kcm,行完AC全程需8s;点Q沿CB向点B匀速运动,速度为每秒1cm.设运动的时间为xs(0<x<8),△DCQ的面积为y1cm2,△PCQ的面积为y2cm2
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)图2所示的抛物线是y2的图象,顶点坐标为(4,10),求图1中AB的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1,y2于点E,F.
①说出线段EF的长在图1中所表示的几何意义;
②P,Q两点在运动过程中,△PDQ的面积是否存在最大值?若存在,请求出点Q运动的时间和△PD精英家教网Q的最大面积;若不存在,请说明理由.

查看答案和解析>>

(2012•十堰)阅读材料:
例:说明代数式
x2+1
+
(x-3)2+4
的几何意义,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+12
+
(x-3)2+22
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
(x-0)2+12
可以看成点P与点A(0,1)的距离,
(x-3)2+22
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3
2
,即原式的最小值为3
2

根据以上阅读材料,解答下列问题:
(1)代数式
(x-1)2+1
+
(x-2)2+9
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B
(2,3)
(2,3)
的距离之和.(填写点B的坐标)
(2)代数式
x2+49
+
x2-12x+37
的最小值为
10
10

查看答案和解析>>

阅读材料:
在直角坐标系中,已知平面内A(x1,y2)、B(x1,y2)两点坐标,则A、B两点之间的距离等于
(x2-x2)2(y2-y1)2

例:说明代数式
x2+1
+
(x-3)2+4
的几何意义,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+(0-1)2
+
(x-3)2+(0-2)2
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
(x-0)2+(0-1)2
可以看成点P与点A(0,1)的距离,
(x-3)2+(0-2)2
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=
3
3
,CB=
3
3
,所以A′B=
3
2
3
2
,即原式的最小值为
3
2
3
2

根据以上阅读材料,解答下列问题:
(1)完成上述填空.
(2)代数式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B
(2,3)
(2,3)
的距离之和.(填写点B的坐标)
(3)求代数式
x2+49
+
x2-12x+37
的最小值.(画图计算)

查看答案和解析>>

阅读材料:(本题8分)

例:说明代数式 的几何意义,并求它的最小值.

解: ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.

设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,

只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,

所以PA′+PB的最小值为线段A′B的长度.为此,构造直角

三角形A′CB,因为A′C=3,CB=3,所以A′B=

即原式的最小值为

根据以上阅读材料,解答下列问题:

(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B        的距离之和.(填写点B的坐标)

(2)求代数式 的最小值

 

查看答案和解析>>

阅读材料:

例:说明代数式 x2+1 + (x-3)2+4 的几何意义,并求它的最小值.

解: x2+1 + (x-3)2+4 = (x-0)2+12 + (x-3)2+22 ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 (x-0)2+12 可以看成点P与点A(0,1)的距离, (x-3)2+22 可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.

设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3 2 ,即原式的最小值为3 2 .

根据以上阅读材料,解答下列问题:

(1)代数式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)的距离之和.(填写点B的坐标)

(2)代数式 x2+49 + x2-12x+37 的最小值为.

 

查看答案和解析>>


同步练习册答案