22.已知MN是一条直线.AB是⊙O的直径.且AB=2R.设A.B两点到M.N的距离分别为x.y. 如图10.当直线MN与⊙O相切时.x.y与O点到直线MN的距离d之间的关系为: , (2)如图11.图12.当直线MN与⊙O相离时.x.y与O点到直线MN的距离d之间的关系为: , (3)根据图10.图11.图12.你能归纳出什么结论: , (4)当直线MN与⊙O相交时.上面归纳的关系是否一定成立?成立时.请写出证明过程.不成立时.说明理由. 附加题: 查看更多

 

题目列表(包括答案和解析)

(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与轴、轴分别交于CD,求过ABD三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本题14分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE, EF. 过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).

【小题1】(1) 填空:当t=      时,AF=CE,此时BH=         
【小题2】(2)当△BEF与△BEH相似时,求t的值;
【小题3】(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.
① 求S关于t的函数关系式;
② 直接写出C的最小值.

查看答案和解析>>

(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒().△MPQ的面积为S.
(1)点C的坐标为___________,直线的解析式为___________.(每空l分,共2分)
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值。
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

查看答案和解析>>

(本题14分)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x, △PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

 

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)
⑴、由图⑴易知,
①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         
⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。
⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,
①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.
②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

查看答案和解析>>


同步练习册答案