运用配方法,求下列二次函数的开口方向,顶点坐标,对称轴,最大(小)值,y随x怎样变化. ① y=x2-7x-5② y=2x2+6x-1③ y=1-6x-3x2④ y=2x2-x-1 查看更多

 

题目列表(包括答案和解析)

(2012•闸北区一模)已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(-2,-6).
(1)求这个抛物线的解析式;
(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;
(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.

查看答案和解析>>

已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(-2,-6).
(1)求这个抛物线的解析式;
(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;
(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.

查看答案和解析>>

已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(-2,-6).
(1)求这个抛物线的解析式;
(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;
(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.

查看答案和解析>>

仔细想一想,聪明的你一定能完成下列问题.
阅读下列材料:
1
2
(1-
1
3
)=
1
1×3
1
2
(
1
3
-
1
5
)=
1
3×5
1
2
(
1
5
-
1
7
)=
1
5×7
,…,
1
2
(
1
99
-
1
101
)=
1
99×101

1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
99
-
1
101
)
=
1
2
(1-
1
101
)
=
50
101

回答下列问题:
(1)在和项
1
1×3
+
1
3×5
+
1
5×7
+…
中第7项是
 
,第n项是
 

(2)你能运用类似方法求出
1
2×4
+
1
4×6
+
1
6×8
…+
1
2006×2008
的值吗?请你试一试;
(3)若αn、βn(其中n为不小于3的正整数)满足αnn=-(2n+1),αn•βn=n2,请你运用上述知识求
1
(α3+1)(β3+1)
+
1
(α4+1)(β4+1)
+…+
1
(α100+1)(β100+1)
的值.

查看答案和解析>>

下列各题中解题方法或说法正确的个数有(  )
(1)用换元法解方程
x
x-1
+
2x-2
x
+3=0,设
x
x-1
=y,则原方程可化为y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非负数的和为零解,则原式可以化为(x-2)2+
y-6

=0;
(4)四个全等的任意四边形的地砖,铺成一片可以不留空隙.
A、1个B、2个C、3个D、4个

查看答案和解析>>


同步练习册答案