“已知(x2+3x-4)·(x2+3x-5)=6.求x2+3x的值 .在求解这个题目中.运用数学中的整体换元可以使问题变得简单.具体方法如下: 解:设x2+3x=y.则原方程可变为: =6 整理得y2-9y+14=0 解得y1=2, y2=7 ∴x2+3的值为2或7 请仿照上述解题方法.完成下列问题: 已知:(x2+ y2-3)(2x2+2 y2-4)=24.求x2+ y2的值 查看更多

 

题目列表(包括答案和解析)

“已知(x2+3x-4)•(x2+3x-5)=6,求x2+3x的值”,在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:
解:设x2+3x=y,则原方程可变为:
(y-4)•(y-5)=6
整理得y2-9y+14=0
解得y1=2,y2=7
∴x2+3的值为2或7
请仿照上述解题方法,完成下列问题:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

“已知(x2+3x-4)•(x2+3x-5)=6,求x2+3x的值”,在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:
解:设x2+3x=y,则原方程可变为:
(y-4)•(y-5)=6
整理得y2-9y+14=0
解得y1=2,y2=7
∴x2+3的值为2或7
请仿照上述解题方法,完成下列问题:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

“已知(x2+3x-4)•(x2+3x-5)=6,求x2+3x的值”,在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:
设x2+3x=y,则原方程可变为:
(y-4)•(y-5)=6
整理得y2-9y+14=0
解得y1=2,y2=7
∴x2+3的值为2或7
请仿照上述解题方法,完成下列问题:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>


同步练习册答案