3. 熟练地应用定理解决有关问题, 查看更多

 

题目列表(包括答案和解析)

割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=
1
4
(x-4)2
的图象与两坐标轴所围成的图形最接近的面积是(  )
A、5
B、
22
5
C、4
D、17-4π

查看答案和解析>>

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段ABBC相切于端点时刻的位置,⊙O的周长为c.   阅读理解:

  (1)如图1,⊙O从⊙O1的位置出发,沿AB滚  动到⊙O2的位置,当AB = c时,⊙O恰好自转1周.

(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2 = n°,⊙O在点B处自转周.

  实践应用:

(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转   周;若AB = l,则⊙O自转   周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O在点B处自转   周;若∠ABC = 60°,则⊙在点B处自转    周.

(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转   周.

拓展联想:

(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.

(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.   


查看答案和解析>>

  可能性大小的探计和应用

  如图所示的转盘被分成了面积相等的10个数字区域,转动转盘,转到哪一个数都是一个不确定事件,由于这10个数字区域的面积相等,因而转到每一个数字的可能性是一样的,所以转到每一个数字都有的可能性,故转动转盘一次转到9的可能性只有

  将数字区域“0”、“1”作为区域A,数字区域“2”、“3”作为区域B,数字区域“4”、“5”作为区域C,数字区域“6”、“7”作为区域D,数字区域“8”、“9”作为区域E,这样整个转盘被分成了面积相等的五部分,转动转盘,指针落在这五大区域的可能性是一样的,也就是说指针落在区域A、B、C、D、E的可能性都只占,故转动转盘一次,转出的数字是8或9的可能性占,转出数字是6或7的可能性也为,进一步推想转动转盘一次,转出是3或8的可能性占

  依此类推,转动转盘一次,指针落在大于6的数字区域的可能性占;转动转盘一次,指针落在大于5的数字区域的可能性占……,转动转盘一次,指针落在这些区域的可能性的大小正好等于这些区域的面积占整个转盘的面积之比.

  一般地,如果一个区域的面积为m,整个转盘的面积为n,那么转动转盘一次,指针落在这一区域的可能性为

  由转盘可以推广到生活中的其他情况.如一个袋中有n个大小形状相同的球,只有颜色的区别,如果其中有m个红球,那么从中任意摸取一个,取得红球的可能性为.应用这样的规律,我们可以解决许多生活中的实际问题.

连续转动上述转盘两次,都转到数字“9”的可能性为多少?连续转动转盘四次,转到数字“1”“0”“0”“0”可能吗?可能性有多大?

查看答案和解析>>

2、已知,如图,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是(  )

查看答案和解析>>

善于归纳和总结的小明发现,“数形结合”和“分类讨论”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.在某堂数学课中,老师提出这样一个问题:“已知某直角三角形的两边长分别是3和4,请求出第三边.”同学们经过片刻思考后,有的同学回答是5,有的同学回答是
7
,还有的同学提出了不同的看法…,如果你是小明,你的意见如何?请说明你的理由.

查看答案和解析>>


同步练习册答案