3.掌握圆的切线性质并能综合运用切线判定定理和性质定理解决有关问题:(1)切线与圆只有一个公共点,(2)圆心到切线距离等于半径,(3)圆的切线垂直于过切点的半径,(4) 经过圆心且垂直于切线的直线必过切点,(5)经过切点且垂直于切线的直线必过圆心, 弦切角定理及其推论. 4.掌握三角形外切圆及圆外切四边形的性质及应用, 查看更多

 

题目列表(包括答案和解析)

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

已知:四边形ABCD为圆内接矩形,过点D作圆的切线DP,交BA的延长线于点P,且PD=15,PA=9.
(1)求AD与AB的长;
(2)如果点E为PD的一个动点(不与运动至P,D),过点E作直线EF,交PB于点F,并将四边形PBCD的周长平分,记△PEF的面积为y,PE的长为x,请求出y关于x的函数关系式;
(3)如果点E为折线DCB上一个动点(不与运动至D,B),过点E作直线EF交PB于点F,试猜想直精英家教网线EF能否将四边形PBCD的周长和面积同时平分?若能,请求出BF的长.若不能,请说明理由.

查看答案和解析>>

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(3)如果直线x=m在线段OB上移动,交x轴于点D,交抛物线于点E,交BD于点F.连接DE和BE后,对于问题“是否存在这样的点E,使△BDE的面积最大?”小明同学认为:“当E为抛物线的顶点时,△BDE的面积最大.”他的观点是否精英家教网正确?提出你的见解,若△BDE的面积存在最大值,请求出m的值以及点E的坐标.

查看答案和解析>>

(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.

如图,点ABCD分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.

(1)    请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;

(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>


同步练习册答案