29.已知抛物线y=ax与直线y=kx+1交于A.B两点.其中A点坐标是(1.4).则a= .k= ,B点坐标是 查看更多

 

题目列表(包括答案和解析)

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.

(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使
OM
OP
=
2
3
?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

已知抛物线y=ax+bx+c与y轴交于A(0,3),与x轴分别交于B(1,0)、C(5, 0)两点.      

(1)求此抛物线的解析式;

(2)若一个动点P自OA的中点M出发先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A,求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

如图,已知抛物线y=ax+bx-4经过点A(-2,0),B(4,O)与y轴交于C点.
作业宝
(1)求抛物线的解析式.
(2)若D点坐标为(0,2),P为抛物线第三象限上一动点,连PO交BD于M点,问是否存在一点P,使数学公式=数学公式?若存在,求P点坐标;不存在,请说明理由.
(3)G为抛物线第四象限上一点,OG交BC于F,求当GF:OF的比值最大时G点的坐标.

查看答案和解析>>

已知抛物线y=x2-(a+b)x+
c2
4
,a,b,c分别是∠A、∠B、∠C的对边.
(1)求证:该抛物线与x轴必有两个交点;
(2)设抛物线与x轴的两个交点为P、Q,顶点为R,∠PQR=α,已知tanα=
5
,△ABC的周长为10,求抛物线的解析式;
(3)设直线y=ax-bc与抛物线交于点E、F,与y轴交于点M,若抛物线的对称轴为x=a,O为坐标原点,S△MOE:S△MOF=5:1,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

已知抛物线y=
14
ax2+ax+t
与x轴的一个交点为A(-1,0)
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)E是第二象限内到x轴,y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案