如图.在直角坐标系中.O为原点.点A在第一象限.它的纵坐标是横坐标的3倍. 反比例函数的图象经过点A. (1) 求点A的坐标, (2) 求过点A.和点O的一次函数的解析式. 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,O为原点,点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2,二次函数y=x2+mx+2的图象经过点A、B,顶点为D。
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将上述二次函数图象沿y轴向上或向下平移后经过点C,请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1,点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标。

查看答案和解析>>

如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,又B,C两点的坐标分别为(0,b),(1,0)。
(1)当b=3时,求经过B,C两点的直线的解析式;
(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求每种位置关系时b的取值范围。

查看答案和解析>>

如图,在直角坐标系中,点D在y轴上,四边形ABCD是等腰梯形,AB∥CD。已知, DO⊥AB, OE⊥BC,E、O分别为垂足,BC="BO" ,O为坐标原点。

(1) 求证:DO=EO
(2) 已知:C点坐标为(4 , 8),
①求等腰梯形ABCD的腰长;
②问题探究:在这个坐标平面内是否存在点F,使以点F、D、O、E为顶点的四边形是菱形?若存在,请求出所有符合要求的F点的坐标,并说明理由;若不存在,请说明理由。

查看答案和解析>>

如图,在直角坐标系中,O为原点,A(1,3)B(-2,0),△AOB的外接圆M交y轴于E点,AC是直径,AD⊥OD于D。

(1﹚求证:AD·AC=AB·AO;
(2﹚求E、C两点坐标。

查看答案和解析>>

如图,在直角坐标系中,点D在y轴上,四边形ABCD是等腰梯形,AB∥CD。已知, DO⊥AB, OE⊥BC,E、O分别为垂足,BC="BO" ,O为坐标原点。

(1) 求证:DO=EO
(2) 已知:C点坐标为(4 , 8),
①求等腰梯形ABCD的腰长;
②问题探究:在这个坐标平面内是否存在点F,使以点F、D、O、E为顶点的四边形是菱形?若存在,请求出所有符合要求的F点的坐标,并说明理由;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案